Organisation-Oriented Programming of MAS
From Closed to Open MAS
O. Boissier\(^{(1)}\)

J.F. Hübner\(^{(1,2)}\), R. Kitio\(^{(1)}\), A. Ricci\(^{(3)}\), J.S. Sichman\(^{(4)}\)

\(^{(1)}\) MAS/G2I/ENSM.SE, France
\(^{(2)}\) GIA/DSC/FURB, Brazil
\(^{(3)}\) DEIS/Univ. Bologna, Italy
\(^{(4)}\) LTI/USP, Brazil
Organisations in MAS

• Organisation in MAS is a supra-agent pattern of emergent or (pre)defined agents cooperation, for a purpose, that could be defined by the designer or by the agents themselves.

→ Pattern of emergent/potential cooperation
 • Organisation entity, institution, social relations, commitments

→ Pattern of (pre)defined cooperation
 • Organizational structure, norms, …
Organisations in MAS (global picture)
Organisations in MAS (global picture)

<table>
<thead>
<tr>
<th>Organisation Type</th>
<th>Pattern of Cooperation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agent Centred</td>
<td>Emergent</td>
</tr>
<tr>
<td>Organisation Centred</td>
<td>Predefined</td>
</tr>
</tbody>
</table>

Designers / Observers
- Bottom-up
- Top-down
Organisations in MAS (global picture)

Agent Centred

Agents don’t know about organization

Organisation Centred

Agents know about organization

Organization Specification
Organization Entity
Local Representation
Observed Organization
Designer / Observer
Bottom-up
Top-down
Organisations in MAS (approaches)

Agent Centred

Social Reasoning
Coalition formation
Contract Net Protocol ...

Agents know about organization

Swarms, AMAS, SASO
Self-organisations ...

Organisation is observed.
Implicitly programmed in Agents, Interactions, Environment.

AOSE
MASE, GAIA, MESSAGE, ...

Organisation is a design model.
It is hard-coded in Agents

organisation

Organisation-Oriented Programming of MAS

Agents don’t know about organization

TAEMS, STEAM, AGR
MOISE+, OPERA, ...

 Organisation is observed.
 Coalition formation mechanisms programmed in Agents.

Functional Reasoning
Coalition formation
Contract Network ...

Organisation Centred

Agents know about organization

AOSE
MASE, GAIA, MESSAGE, ...

Organisation is a design model.
It is hard-coded in Agents

organisation

Designer / Observer
Bottom-up Top-down
Outline

1. Introduction

2. Organisation Oriented Programming

3. Organisation Modeling Language

4. Organisation Infrastructure

5. Conclusion and Perspectives
Motivations

- Organisations are useful to program multi-agent systems:
 - To deal with heterogeneous agents’ autonomy i.e. controlling their actions, goals, … while keeping their autonomy
 - To help heterogeneous agents to coordinate to achieve common goals
- e.g. when someone adopts the role of master student in a laboratory, she remains autonomous to perform its research but should follow some rules of the laboratory. These rules can be:
 - “the access to computers requires an username”
 - “a master thesis should be written in two years”
- The master student is free to adopt the role, but once adopted the organisation expects her to limit her autonomy.
Multi-Agent Organisation and Autonomy

B: agents’ possible behaviors
P: agents’ behaviors that lead to global purpose
E: agents’ possible behaviors constrained by the environment
O: agents’ possible/permitted/obliged behaviors constrained by the organisation

Agents’ desired behavior:

\[P \cap E \cap O \text{ not too big} \]
• increases performance
• constrains agents’ autonomy

\[P \cap E \cap O \text{ not too small} \]
• increases adaptation
• keeps agents’ autonomy
Infrastructure/Platforms for MAS in which domain agents operate on top of a middleware layer

- Supporting the implementation of agents
- Providing fundamental global generic services
 e.g. JADE, FIPA-OS, SACI, …
Organisation Modeling Language (OML): Declarative specification of Multi-Agent Organisation(s), collecting and expressing specific constraints and cooperation patterns imposed on the agents
e.g. AGR [Ferber 98], Teamwork [Tambe 98], Islander [Esteva 01], Moise+ [Hubner 02], …
Organisation Oriented Programming

"Multi-Agent Platform"

Organisation Specification written with Organisation Modeling Language (OML)

Organisation Implementation Architecture (OIA)
supports the management of the Organisation Entity

Organisation-awareness agent mechanisms transforming agents into organisation-deliberative agent (e.g. Jason-MOISE [Hubner 06], Autonomy based reasoning [Carabelea 07])

Organisation Infrastructure e.g. Madkit [Gutknecht 98], Karma [Pynadath 03], Ameli [Esteva 04], S-Moise+ [Hubner 05], SYNAI [Gateau 07], …
Outline

1. Introduction
2. Organisation Oriented Programming
3. Organisation Modeling Language
 MOISE+, MOISE^{inst}, ...
4. Organisation Infrastructure
5. Conclusion and Perspectives
Motivations

- Organisation is explicitly represented as:
 - Organisation specification,
 - Organisation entity,
 - Local representations of organisation entity

- Agents can “reason” about the organisation
 - to enter into/leave from the organisation entity during execution
 - to change/adapt the organisation entity, organisation specification
 - to obey/disobey the organisation
 - organisation is no more a regimentation

- Organisation Infrastructure can
 - Manage the organisation entity and support the agents in their cooperation
 - Monitor and regulate the agents in the organisation entity
MOISE+ Organisation Modeling Language

- **Model of Organisation for multi-agent Systems** [Hannoun 98, Hübner 03]
- Distinguishes three main dimensions in the organisation of a Multi-Agent System:
 - Structural Specification
 - Functional Specification
 - Deontic Specification
MOISE+ OML Dimensions

Organisation Oriented Programming of MAS

LIP6 26th January 2009

- **Environment**
- **Structural Specification**
 - Groups, links, roles
 - Compatibilities, multiplicities
 - Inheritance
- **Functional Specification**
- **Global goals, plans, Missions, schemas, preferences**
- **Deontic Specification**: Permissions, Obligations
- Agents' autonomy is considered!
MOISE+ OML: Structural Specification

Graphical view of SoccerGame Application
SS : 3-5-2

Organisation Entity from OS 3-5-2
- Marcos - goalkeeper
- Lucio - back
- Edmilson - middle
- Roque Jr. - leader
- Cafu - leader
- Gilberto Silva - middle
- Juninho - middle
- Ronaldinho - attacker
- Roberto Carlos - attacker
- Ronaldo - attacker
- Rivaldo - attacker

- Roles
- Links
- Groups
MOISE + OML: Functional Specification

Graphical view of SoccerGame Application FS
Social Scheme: side_attack

- Score a goal
 - m1, m2, m3
 - Shot at the opponent’s goal
 - Kick the ball to the goal area
 - Go to the opponent back line
 - Kick the ball to the agent
 - Committed to m2
 - Be placed in the opponent goal area
 - m3
 - m2
 - Be placed in the middle field
 - m2
 - m1
 - Get the ball
 - m1
 - Go toward the opponent field
 - Be placed in the middle field
 - m2
 - m1

mission
goal
sequence
choice
parallelisme
MOISE+ OML: Deontic Specification

- Explicit relation between the functional and structural specifications
 - Permissions and obligations to commit to missions in the context of a role
 - To make explicit the normative dimension of a role

<table>
<thead>
<tr>
<th>Role</th>
<th>Deontic Relation</th>
<th>Mission</th>
<th>Temporal Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back</td>
<td>Permission</td>
<td>m1</td>
<td>In [0 30]</td>
</tr>
<tr>
<td>Middle</td>
<td>Obligation</td>
<td>m2</td>
<td>during [Attacker]</td>
</tr>
<tr>
<td>Attacker</td>
<td>Obligation</td>
<td>m3</td>
<td>Any</td>
</tr>
</tbody>
</table>
MOISE+ OML: Deontic Specification

Permissions

Obligations

Graphical view of SoccerGame Application DS

Organisation Entity
Lucio ----- m1
Cafu ----- m2
Rivaldo ----- m3
MOISEinst OML Dimensions [Gateau 07]

- **Contextual Specification**
- **Functional Specification**
- **Normative Specification**: Permissions, Obligations

Structural Specification
- Groups, links, roles
- Compatibilities, multiplicities
- Inheritance

Global goals, plans, Missions, schemas, preferences
Landscape of existing OMLs

TAEMS [Decker 96]
- Environment
- Functional Specification

STEAM [Tambe 98]
- Environment
- Structural Specification

AGT [Ferber 98]
- Structural Specification

ISLANDER [Esteva 01]
- Structural Specification

a) O_p: agents’ behaviors functionally constrained by the organization
b) O_s: agents’ behaviors structurally constrained by the organization
c) O_o: agents’ behaviors structurally constrained by the organization
O_s: agents’ behaviors functionally constrained by the organization
d) O_o: agents’ behaviors structurally constrained by the organization
O_i: agents’ behaviors interactively constrained by the organization
O_p: agents’ permitted/obliged behaviors functionally constrained by the organization
Outline

1. Introduction
2. Organisation Oriented Programming
3. Organisation Modeling Language
4. Organisation Infrastructure
 S-MOISE+, SYNAI, ORA4MAS
5. Conclusion and Perspectives
Motivations

- To help heterogeneous agents to dynamically participate in the organisation
 - Agents have to respect the organisation despite their architecture, their designer, …

- To ensure or enforce that the organisation is respected
 - Agents have to respect the organisation despite their architecture, their designer, …

- Interpretation of the OML
- Use of regimentation, enforcement, tools for cooperative tasks, …
- Allows agents to interact with the organisation (agent programming issues)
MOISE+ Organisation Infrastructure

- OML: MOISE+ [Hubner 02]
- OIA: S-MOISE+ [Hubner 05], J-MOISE+ [Hubner 06]
S-MOISE+ OrgBox Services

• Is attached to an agent and connected to the OrgManager

• Interface used by the agent:
 • to change the organisation entity (e.g. adopt a role)
 • to get the state of the organisation entity
 • However, only a personalised version of the entity is given from OrgManager to OrgBox, respecting the acquaintance relation
 • to send/receive a message to/from another agent

• Interface used by the OrgManager:
 • to notify the agent about every change in the state of a scheme to which the agent has committed to

• No particular agent architecture is required
S-MOISE+ OrgManager

• Maintains the current state of the organisation entity
 • Created groups and schemes
 • Role assignments (Agents to Roles)
 • Mission assignments (Agents to Missions)
 • Change goal states (satisfied or not) ...

• Maintains the current state of the organisation specification

• Receives messages from the other agents’ OrgBoxes asking for changes in the organisation entity/specification

• Regiments some norms (cardinality, compatibility …)
S-MOISE+ Organisation Events

- Organisation life-cycle
 - Entrance/Exit of an agent
 - Creation/Deletion of an Organisation entity
 - Change of Organisation specification
- Structural Organisation life-cycle
 - Creation/Deletion of a group
 - Adoption/Release of a role by an agent
- Functional Organisation life-cycle
 - Creation/End of a schema
 - Commitment/Release of a mission by an agent
 - Change of a global goal state
- Obligation life-cycle
 - Start/end of obligation
S-MOISE+ example

1. oe1=createOE('score a goal', '3-5-2')
2. g1=createGroup('team', oe1)
3. g1-1=createSubgroup('defense', g1)
4. sc1=createScheme('side_attack', g1)
Organizational Entity after the events

The defense group is not well formed since there is no agent playing ‘back’ role.
MOISEinst: Organisation Infrastructure [Gateau 07]
ORA4MAS [Kitio 07]: Motivations

- Regimentations vs Enforcements in Multi-Agent Organisations
 - Regimentations prevent agents’ autonomy
 - e.g. “the access to computers requires an username”, "roles which cardinality is full cannot be adopted, agents cannot adopt incompatible roles"
 - Norms regulate agents’ autonomy
 - e.g. “a master thesis should be written in two years” "based on its roles, an agent is obliged to commit to certain missions, based on its missions, an agent is obliged to achieve some goals"

- Limitations of current approaches:
 - Management of regimentations and norms realised by mechanisms in dedicated services/agents within the agent platform
 - Organisation is half on its way of being a first class entity in MAS!!!

- Requirements:
 - “Give the power back to the agents”, i.e. decision on Norms violation should be realised within agents and no more in the agent platform
 - Distributed mediation between agents to access the organisation state and to cooperate for norm management and enforcement
OROA4MAS: Foundations

• Artifacts, Agents, Workspaces [Ricci 07]
• Background in Activity Theory and Distributed Cognition
ORAM4MAS: Foundations

- Workspace
- Artifact
First class entities for Organisation entity

- **Organisational Artifacts:**
 - Encapsulate and distribute the management of the organisation
 - Are in charge of:
 - enactment of regimentations
 - evaluation of norms compliance
 - Mediate agent interaction within the organisation

- **Agents:**
 - Try to achieve their goals
 - Use/control the organisational artifacts: i.e observe, monitor their state, reason and decide about the organisation (sanctions, …)
1. The agents’ behaviours within the organisation is supported and mediated by the organisational artifacts with respect to the roles that the agents play.
 - Violation of regimentations are prevented
 - Non compliance to norms are detected
 Organisation state, status of norms is published/made accessible to the agents through the artifacts

2. Using this information,
 - agents decide about norm violation and corresponding sanctions to apply
 - agents take care/or not of the sanctions and behave accordingly or not

 • Our current work is currently focused on point 1.
Shaping OR4MAS on MOISE+ OML

- Organisation is specified along three dimensions:
 - Structural Specification (SS): groups, roles, …
 - Functional Specification (FS): social schemes, missions, goals, …
 - Deontic Specification (DS): obligations, permissions
Organisational Artifacts for Moise+

OrgBoard:
Management of the entry/exit/access to the organisation

Legend
- Operation
- Observable property
- Link Operation
Organisational Artifacts for Moise+

GroupBoard:
Management of life cycle of an instance of group in the organisation according to its specification in the structural specification

Legend
- Operation
- Observable property
- Link Operation

OrgBoard: Organisation Oriented Programming of MAS

- groupBoards
- schemeBoards
- normativeBoards
- getOrgAgents
- getMemberAgents
- registerOrgArt
Organisational Artifacts for Moise+}

SchemeBoard:
Coordination of the agents for the execution of an instance of social scheme attached to a group instance according to its specification in the functional specification.

Legend:
- Operation
- Observable property
- Link Operation
Organisational Artifacts for Moise+

NormativeBoard:
Management of the status of norms in relation to a social scheme execution within a group

Legend
- Operation
- Observable property
- Link Operation

OrgBoard
- groupBoards
- schemeBoards
- normativeBoards
 - getOrgAgents
 - getMemberAgents
 - registerOrgArt

SchemeBoard
- playersOfMission
- playableMissions
- goalsState
 - commitMission
 - leaveMission
 - setGoalAchieved

GroupBoard
- playersOfRole
- playableRoles
 - adoptRole
 - leaveRole
 - ...

SS.Defense

SS.Attack

LIP6 26th January 2009
Organisational Artifacts for Moise+

Legend

- Operation
- Observable property
- Link Operation

OrgBoard
- groupBoards
- schemeBoards
- normativeBoards
- getOrgAgents
- getMemberAgents
- registerOrgArt

NormativeBoard
- NormStatus
- updateAgentStatus

GroupBoard
- playersOfRole
- playableRoles
- adoptRole
- leaveRole
- ...

SchemeBoard
- playersOfMission
- playableMissions
- goalsState
- ...
- commitMission
- leaveMission
- setGoalAchieved

SS.Team
- groupBoards
- schemeBoards
- normativeBoards

SS.Defense
- groupBoards
- schemeBoards
- normativeBoards

SS.Attack
- groupBoards
- schemeBoards
- normativeBoards
Agents within ORA4MAS for MOISE+

Legend:
- Agent
- Operation
- Observable property
- Link Operation

OrgBoard
- groupBoards
- schemeBoards
- normativeBoards

NormStatus
- updateAgentStatus

NormativeBoard
- getOrgAgents
- getMemberAgents
- registerOrgArt

SchemeBoard
- playersOfMission
- playableMissions
- goalsState
- commitMission
- leaveMission
- setGoalAchieved

GroupBoard
- playersOfRole
- playableRoles
- adoptRole
- leaveRole

SchemeBoard
- commitMission
- leaveMission
- setGoalAchieved

SS.Team
- GroupBoard
- SS.Defense
- SS.Attack
Example scenario (1/2)

1. Using the Organisation Specification, an agent:
 a) Creates the OrgBoard for the corresponding organisation
 b) Creates the different GroupBoards corresponding to the OS (e.g. Team, Defense, Attack). GroupBoards register in the OrgBoard

2. OrgBoard and GroupBoards are perceived by the agents.

3. Agents adopt roles according to their preferences and to the OS by using the operation adoptRole of the corresponding GroupBoard

4. Maximal number of roles is reached: operation adoptRole is disabled (i.e. way of enacting regimentation)

5. Since groups are wellformed, an agent decides to create the SchemeBoard to start the process.

6. The created SchemeBoard is registered in the OrgBoard.

7. Creation of the corresponding NormativeBoard
8. SchemeBoard acts as a coordination artifacts showing which goals are achieved, the ones that are still to be achieved and that are possibles, the ones that are not yet possibles, …

9. Obligations and permissions are computed and verified by the NormativeBoard
 - Use of information about members of the groups and their commitments to missions and updating of goal status in SchemeBoard
 - In case of non achievement of goals while being obliged, norm non compliance is detected

10. An agent may use this information to decide that it is a violation of the norms by the corresponding agents and may decide to apply sanctions according to its own strategies

11. …
Outline

1. Introduction
2. Organisation Oriented Programming
3. Organisation Modeling Language
4. Organisation Infrastructure
5. Conclusion and Perspectives
Conclusion and perspectives

• Status
 • First prototype of ORA4MAS/MOISE+ implemented on top of Cartago
 • Experiments under realisation with Jason Agents and Jadex Agents
 • Future experiments with 2APL Agents

 • Organisation is no more outside of the MAS
 • Orwell’s nightmare cannot become reality ;-)

• Where we have to go - Further works and questions
 • Other organisational artifacts? (e.g. “Reputation” artifact [Hubner 08])
 • How to link organisational artifacts with “cognitive artifacts” (i.e. tools, resources, …)?
 • Situated organisation? Situated organisational artifacts?
 • RBAC on the organisational artifacts
 • Organisational agents
References

- [Hubner 08] Jomi Fred Hubner, Laurent Vercouter, and Olivier Boissier, Instrumenting Multi-Agent Organisations with Reputation Artifacts, COIN Workshop at AAAI 08.